
KNIT10 FABRIC Tutorial:

Efficiently Accessing Public Big Data Sets
The University of Kentucky MF Team

Presenters: James Griffioen, Charles Carpenter
Other Contributors: Pinyi Shi, Mami Hayashida, Yongwook Song, Hussamuddin Nasir,

Vaiden Logan, Dakota Morgan, Ken Calvert, Zongming Fei

March 11, 2025

Preliminaries:
Slides and Notebooks

● Slides for this tutorial can be found in the KNIT10 Presentations folder on
the Workshop Materials page https://knit.fabric-testbed.net

● Notebooks can be found by using the FABRIC Artifact Manger to search for
KNIT10 and then selecting “KNIT10 Accessing Public Big Data Sets”

See the next slide for instructions to get the files using the FABRIC JupyterHub.

https://drive.google.com/drive/folders/1Ki3RHiTp7X1UhYeQ-qr48io5exiclNp6
https://knit.fabric-testbed.net
https://learn.fabric-testbed.net/knowledge-base/artifact-manager/

Accessing This Tutorial’s Slides and Notebook

1) Login to FABRIC’s Jupyter https://jupyter.fabric-testbed.net using the
“default” server option (although any of the server options will work).

2) Open the directory jupyter-examples-rel1.8.0 (any rel > 1.7.1 will work)
3) Open and run the artifact_manager.ipynb notebook
4) Type knit into the Title: search field.
5) Find KNIT10 Accessing Public Big Data Sets in the results and click the

Download button.
6) The files will automatically be downloaded and extracted to

/home/fabric/work/KNIT10_Accessing_Public_Big_Data_Sets/vYYYY
-MM-DD/tutorial_files where YYYY-MM-DD is the latest version.

https://jupyter.fabric-testbed.net

FABRIC In-Network Data Caching Service
(FAB-Cache)

Background

● Researchers from all research domains are now leveraging big data sets for
AI, data analysis, simulation/modelling, etc. These big datasets are often
(redundantly) requested by many processing nodes on the network. For
example the same data may be used by researchers all over the world, or
by many nodes in a cluster processing different parts of the data.

● Frequent redundant downloads of large datasets (GBs to TBs) from remote
repositories strain network bandwidth, increase costs, slow down access
times, and overload source servers, leading to availability and performance
issues.

Need for a Distributed In-Network Caching System

In-Network Caching:
● Cache data at network routers as data flows from a server to a client
● Network provides data to clients if it has it cached at a router on the path

to the server.

Benefits:
● Reduce Bandwidth Usage: Avoid redundant downloads.
● Faster Access: Retrieve datasets from nearby cached copy.
● Less Load on Data Providers: Improve availability of public datasets.
● Scalability: Support more users without network congestion.

Implementing an In-Network Caching System in Fabric

Fabric sites are geographically
distributed and each site has large
storage volumes that can be used to
cache big datasets.

FABRIC’s high performance network
links make data transfer faster.

Fabric In-Network Data Caching Service(FAB-Cache) Design

FAB-Cache Components(Used in this tutorial)

Nginx proxy chain:
Proxy_pass the request to the next nginx
container.
Response will be cached to the volume.

Flask app:
User-facing application for submitting requests
and check status of FAB-Caching nodes

We will create a fabric slice with fabnetv6 and use
the fabnetv6 addresses of the caching nodes for
connection. (No Rathole tunnel)

See the FAB-cache Demo/Tutorial

Monitoring FABRIC Usage

FABRIC Public
Metrics Server

FABRIC Infrastructure

Public

Infrastructure

Operations

Research

The FABRIC Measurement Framework collects detailed measurements (metrics) from each FABRIC
rack. Unlike other research infrastructure, FABRIC makes that data available to the research
community based on differing levels of trust: Public, Infrastructure, Research, and Operations

FABRIC Rack Infrastructure (Components to Measure)

Head Node

Worker 1

Worker n…

Worker 2

Switches

Storage

GPS PTP

OpenStack
Docker

Prometheus
ELK

Control Framework
User Services

 Hardware Services

FABRIC Rack Measurement Data
Measurement Data includes the
Metric Name, a Numeric value(s)
stored with a Timestamp and a set
of Labels

Grafana is used to
visualize the metrics.

Prometheus is used to
periodically gather metrics and
store them in a Time Series
DataBase (TSDB)

Example: Prometheus Exporter Data
HELP http_requests_total The total number of HTTP requests.
TYPE http_requests_total counter
http_requests_total{method="post",code="200"} 1027 1395066363000
http_requests_total{method="post",code="400"} 3 1395066363000

Making FABRIC Metrics Available

11/16/23 15

Public Metrics:
• Very basic link information (e.g., up/down, utilization)
• Available to anyone – no authentication required

Infrastructure Metrics:
• Non-private infrastructure information (e.g., cpu, mem,

disk, net loads)
• Available to FABRIC users – authenticate with FABRIC

login

Research Metrics:
• Non-regulated infrastructure information (e.g., most

everything except IRB, PII, etc)
• Requires a proposal describing research use as well as

NDA – only approved researchers can access the data

Operations Metrics:
• All infrastructure information used by operations team
• Available to FABRIC Operations team – only operators

can access the data

Infrastructure

Researcher

Operations

Public

FABRIC Measurement Data

● System level Data
○ Bandwidth, packet counts, one-way

packet latency, CPU/memory/disk
usage, etc.

● Low-level Optical Data
○ ESnet portal
○ Optical Power, EDFA Power, Pre-FEC

Data, Optical Frequency, Differential
Group Delay, etc.

Accessing FABRIC Infrastructure Performance Data

● FABRIC Measurement Services:
https://portal.fabric-testbed.net/resources/tools

● Public Network Data:
https://public-metrics.fabric-testbed.net/grafana

● Infrastructure Measurement Data:
https://infrastructure-metrics.fabric-testbed.net/
grafana

● Optical Performance Data: Follow the link on
https://portal.fabric-testbed.net/resources/tools

● Latency Data:
https://public-metrics.fabric-testbed.net/latency

● PerfSonar Measurements: Link coming soon

https://portal.fabric-testbed.net/resources/tools
https://public-metrics.fabric-testbed.net/grafana
https://infrastructure-metrics.fabric-testbed.net/grafana
https://infrastructure-metrics.fabric-testbed.net/grafana
https://portal.fabric-testbed.net/resources/tools
https://public-metrics.fabric-testbed.net/latency/

Demonstration:

Working with FABRIC’s
Public and Infrastructure Performance Data

OWL

FABRIC’s One Way Latency Service

FABRIC’s One Way Latency (OWL) Service

https://public-metrics.fabric-testbed.net site and clicking on the Latency link.

https://public-metrics.fabric-testbed.net
https://public-metrics.fabric-testbed.net/latency

https://public-metrics.fabric-testbed.net/latency/

One Way Latency (OWL) Measurements

https://public-metrics.fabric-testbed.net/latency/

Motivation

One Way Latencies are often
difficult to measure because
the source and destination
clocks must be synchronized.

node 1 node 2

~$ date +%s
1726591965

~$ date +%s
1726591974

UNSYNCHRONIZED!

sent time
according to

my clock
received time
according to

my clock

Why OWL (One Way Latency)?

One Way Latency (OWL) and PTP clocks
FABRIC racks use GPS
disciplined clocks that are
highly synchronized.

node 1 node 2

~$ date +%s
1726591965

~$ date +%s
1726591965

sent and received
timestamps using

synchronized clocks

Synchronized clocks

https://app.diagrams.net/?page-id=OIlN0xJ0Gk2GcWilSOsk&scale=auto#G1QRsU0Lhm5v_Iwx6a92paf42TQBnq1K7G

Collecting One Way Latency (OWL) Information on FABRIC

● Uses a long-lived One-Way Latency
(OWL) Measurement Slice with a VM
on each (GPS-driven) PTP capable site

● OWL on each VM actively sends
time-stamped probe packets to other
VMs

● OWL on each receiver VM calculates
the one way latency using high
accuracy GPS-synchronized clocks

● OWL latency information is public.

https://public-metrics.fabric-testbed.net/latency/

https://public-metrics.fabric-testbed.net/latency/

Questions? Comments?

This work supported in part by NSF Grant numbers 1935966, 2330891, and 2029235

