KNIT10 FABRIC Tutorial:

Efficiently Accessing Public Big Data Sets

The University of Kentucky MF Team
Presenters: James Griffioen, Charles Carpenter
Other Contributors: Pinyi Shi, Mami Hayashida, Yongwook Song, Hussamuddin Nasir,
Vaiden Logan, Dakota Morgan, Ken Calvert, Zongming Fei

March 11, 2025



Preliminaries:
Slides and Notebooks

e Slides for this tutorial can be found in the KNIT10 Presentations folder on
the Workshop Materials page https://knit.fabric-testbed.net

e Notebooks can be found by using the FABRIC Artifact Manger to search for
KNIT10 and then selecting “KNIT10 Accessing Public Big Data Sets”

See the next slide for instructions to get the files using the FABRIC JupyterHub.


https://drive.google.com/drive/folders/1Ki3RHiTp7X1UhYeQ-qr48io5exiclNp6
https://knit.fabric-testbed.net
https://learn.fabric-testbed.net/knowledge-base/artifact-manager/

Accessing This Tutorial’s Slides and Notebook

1)

2)
3)
4)
5)

6)

Login to FABRIC'’s Jupyter https://jupyter.fabric-testbed.net using the
“default” server option (although any of the server options will work).

Open the directory jupyter-examples-rel1.8.0 (any rel > 1.7.1 will work)
Open and run the artifact_manager.ipynb notebook

Type knit into the Title: search field. T

Find KNIT10 Accessing Public Big Data Sets in the results and click the
Download button.

The files will automatically be downloaded and extracted to
/home/fabric/work/KNIT10_Accessing Public_Big Data Sets/vYYYY
-MM-DD/tutorial_files where YYYY-MM-DD is the latest version.



https://jupyter.fabric-testbed.net

FABRIC In-Network Data Caching Service
(FAB-Cache)



Background

Researchers from all research domains are now leveraging big data sets for
Al, data analysis, simulation/modelling, etc. These big datasets are often
(redundantly) requested by many processing nodes on the network. For
example the same data may be used by researchers all over the world, or
by many nodes in a cluster processing different parts of the data.

Frequent redundant downloads of large datasets (GBs to TBs) from remote
repositories strain network bandwidth, increase costs, slow down access
times, and overload source servers, leading to availability and performance
issues.



Need for a Distributed In-Network Caching System

In-Network Caching:

e (Cache data at network routers as data flows from a server to a client
e Network provides data to clients if it has it cached at a router on the path
to the server.

Benefits:

e Reduce Bandwidth Usage: Avoid redundant downloads.

e Faster Access: Retrieve datasets from nearby cached copy.

e Less Load on Data Providers: Improve availability of public datasets.
e Scalability: Support more users without network congestion.



Implementing an In-Network Caching System in Fabric

Seattle . . .
Fabric sites are geographically
Sertian Pringelon distributed and each site has large
salt Lake Cit S Y~ storage volumes that can be used to
¥, 7 @ Noska EbukY T gNew York cache big datasets.
° Kangas City e 'UU§Y Washington
SR RE&’%F\X ) .
—= e SL @iheon FABRIC's high performance network
os Angeles .
us ¥ s links make data transfer faster.
Dallas
®

FIU



Fabric In-Network Data Caching Service(FAB-Cache) Design

Input args:
1. node_to_connect
2. IP_address

3. timeout

4. fabric_id_token(api call)

User with public %,

A 4

Start rathole
container using:
Rathole_docker_cmd

Download

Data to be saved:

Fabric Slice

login(UCSD)

option1: web page
option2: AP call

response:
Rathole_docker_cmd
Download_data_cmd

POST Request
IP address
timeout

token
Rathole_port
username

éFIask:som

node1(LOSA)

A Flask :soo1

start
rathhole

Rathole

<%
container

connection
setup

A Flask :soo1

request_manager(SRI)

username
node_to_connect
IP address
timeout
random_rathole_port
Rathole_port
token
Rathole_docker_cmd
Download_data_cmd

A

node2(SALT)

=y, Flask :soo1

ginx
container

node3(STAR)

|2y, Flask :soo1

:8080

node5(DALL)

Y

container
:8080

2y Flask :soo1

ginx |«

sql databse on
request_manager

node4(WASH)

|2y, Flask soot

User sends request to login node.
Request manager node starts rathole
client container and returns
instructions to the user

User runs the docker command in the
instruction to start rathole server
container to connect to the Fabric
caching node

®

User runs the curl command to
download the dataset

Dataset on Internet




FAB-Cache Components(Used in this tutorial)

FAB-Cache Slice

FAB-Cache Nodel ACHE FAB-Cache Node2 e FAB-Cache NodeN CACHE
write response write response write response regponse
cache volume
to cache cachevolume | oo onse to cache response to cache cache volume
response < N ] 1
- i "™ . e ploxy_pass
proxy_pass N
request N | proxy_pass - request
Flask App [ processed request
request Flask App Flask App
\ request/response equest/response
@ r’smnotvﬁ\ fabnetvé @
R | ~
User's slice
Nodet Node2 Node3

Nginx proxy chain:

Proxy_pass the request to the next nginx
container.

Response will be cached to the volume.

Flask app:
User-facing application for submitting requests
and check status of FAB-Caching nodes

We will create a fabric slice with fabnetv6 and use
the fabnetv6 addresses of the caching nodes for
connection. (No Rathole tunnel)



See the FAB-cache Demo/Tutorial



Monitoring FABRIC Usage



FABRIC Infrastructure

Seattle

Salt Lake City
UgahO
LBNL
[
e
SRI

Los Angeles
®
UcsD

Princeton
®

StarLight Rutgers UMass
[ ]

GPN .
EDE
[ ] - P§C .

o NCSA @ EDUKY .New York

: °
Kansas City © ]UU§Y Washington

GaTech RERM%X

.Cler%son

TACC
® Atlanta

Dallas

FIU

FABRIC Public
Metrics Server

Public

Infrastructure

Research

Operations

The FABRIC Measurement Framework collects detailed measurements (metrics) from each FABRIC
rack. Unlike other research infrastructure, FABRIC makes that data available to the research
community based on differing levels of trust: Public, Infrastructure, Research, and Operations




FABRIC Rack Infrastructure (Components to Measure)

Hardware Services
Head Node | <{}> Switches OpenStack
9 Docker
Worker 1 Prometheus
< Storage ELK
Worker 2 ) Control Framework
Worker n... @ GPS PTP User Services




FABRIC Rack Measurement Data

Example: Prometheus Exporter Data Measurement Data includes the

# HELP http requests total The total number of HTTP requests. Metric Name, a Numeric value(s)
# TYPE http requests total counter stored with a fimestamp and a set
http requests total {method="post",code="200"} 1027 1395066363000 of Labels

http requests total {method="post",code="400"} 3 1395066363000

Prometheus is used to
periodically gather metrics and

store them in a Time Series
Prometheus DataBase (TSDB)

’ C\ Grafana is used to

visualize the metrics.
Grafana




Making FABRIC Metrics Available

Infrastructure Metrics:
Non-private infrastructure information (e.g., cpu, mem,
disk, net loads)
Available to FABRIC users — authenticate with FABRIC
login

15




FABRIC Measurement Data

e System level Data
o Bandwidth, packet counts, one-way
packet latency, CPU/memory/disk
usage, etc.
e Low-level Optical Data

o ESnet portal

o  Optical Power, EDFA Power, Pre-FEC
Data, Optical Frequency, Differential
Group Delay, etc.

n O

Prometheus

Grafana



Accessing FABRIC Infrastructure Performance Data

e FABRIC Measurement Services:
https://portal.fabric-testbed.net/resources/tools

e Public Network Data:
https://public-metrics.fabric-testbed.net/grafana

e Infrastructure Measurement Data:
https://infrastructure-metrics.fabric-testbed.net/
grafana

e Optical Performance Data:
https://portal.fabric-testbed.net/resources/tools —

e Latency Data: S
https://public-metrics.fabric-testbed.net/latency TEE e

e PerfSonar Measurements:

>



https://portal.fabric-testbed.net/resources/tools
https://public-metrics.fabric-testbed.net/grafana
https://infrastructure-metrics.fabric-testbed.net/grafana
https://infrastructure-metrics.fabric-testbed.net/grafana
https://portal.fabric-testbed.net/resources/tools
https://public-metrics.fabric-testbed.net/latency/

Demonstration:

Working with FABRIC's
Public and Infrastructure Performance Data



OWL
FABRIC's One Way Latency Service



FABRIC’'s One Way Latency (OWL

Service

G % httpsy/public-metrics fabric-testbed.net

FABRIC
Welcome to FABRIC Public Metrics

This site provides access to publicly available FABRIC Metrics.

Link Traffic Graph

d FABRIC racks.
Select the source andor destination rack(s) of interest to plot the bandwidth used
during a specified time period.

Grafana

oo the Public pag d
explore metrics,

(NN

ESnet's FABRIC Dashboards

ESnet's public dashboards. which include Transporter Line Optical Statistics for
FABRLC.

One Way Latency

See one way latency (OWL) measurements between FABRIC racks equipped with

6P timing and precision time protocol(PTP).

ax @ 0D jn)

5
(-]

FABRIC Link Loads

Display an overview of the current link status (usage andjor faiure status) as a
traffic matrix. The most used (Top) and least used (Bottom) links are shown at the
bottom of the page.

https://public-metrics.fabric-testbed.net site and clicking on the Latency link.



https://public-metrics.fabric-testbed.net
https://public-metrics.fabric-testbed.net/latency

One Way Latency (OWL) Measurements

FABRIC Latency Monitor

FABRIC slice sites
Node 1

CERN

Node 2

GATECH

Duration

6 hours

CERN (10.143.7.2) --> GATECH (10.136.134.2) One-way Latency (GMT)

| ﬂ
| LV
I\ A
WA U\J\‘d\/f\ﬁ“f\/“/\‘wj\/w/ ,/\v’\/\/A‘/(‘wf/\/vA\," ‘\J\A/ A‘V'V\\N“\/\/\,/ N\v”wuva”w’ﬂ‘w/\i\/bw W, /\/\j\j‘v\,\/\/v’l \'“f'\\jv\f W\/\“ il p/\,N\ N\/\J Ao\
'

: V
“ 3:00 14:00 s 16:00 17:00

Probe Packet Arrival Time (GMT)

GATECH (10.136.134.2) --> CERN (10.143.7.2) One-way Latency (GMT)

g A A | ‘
5 \ A . [ M \ MAAN LA
sssw/\WJ\A_n/ “J\f\/\,/\lvx/\ﬂ\* uf\/\ﬁ\.e'”\/\f\/\,\,v ‘/‘./j\“’“\«f \/‘”\M/\ma,m/\,,/‘ V\/\/\/V\/AW\/’N\N\QN\/\/“‘(‘V\/W "”\/*/\A/\«/‘«VMJ Wt Ty, J‘A\}wﬁ“»""\f/\ux
100 1500 1600 700 w00
s

13:00
17, 2024
Probe Packet Arrival Time (GMT)

https://public-metrics.fabric-testbed.net/latency/



https://public-metrics.fabric-testbed.net/latency/

Why OWL (One Way Latency)?

Motivation UNSYNCHRONIZED!

One Way Latencies are often
difficult to measure because ~$ date +%s
the source and destination 1726591965

clocks must be synchronized.

~$ date +%s
1726591974

node 1 P node 2

sent time
according to
my clock

received time
according to
my clock




One Way Latency (OWL) and PTP clocks

FABRIC racks use GPS

disciplined clocks that are 7@

highly synchronized.

L

Synchronized clocks

~$ date +%s

1726591965

‘ ] Signal

GPS
Clock

PTP

Time
Server

~$ date +%s

1726591965

node 1

>

node 2

timestamps using

sent and received
synchronized clocks

|

Mgmt
Network

Mgmt



https://app.diagrams.net/?page-id=OIlN0xJ0Gk2GcWilSOsk&scale=auto#G1QRsU0Lhm5v_Iwx6a92paf42TQBnq1K7G

Collecting One Way Latency (OWL) Information on FABRIC

eeeeeee

e Uses along-lived One-Way Latency

(OWL) Measurement Slice with a VM Ly bes

on each (GPS-driven) PTP capable site iy DALY o
e OWL on each VM actively sends N ) g

time-stamped probe packets to other T

VMs |

e OWL on each receiver VM calculates
the one way latency using high
accuracy GPS-synchronized clocks

e OWL latency information is public.

https://public-metrics.fabric-testbed.net/latency/



https://public-metrics.fabric-testbed.net/latency/

Questions? Comments?

This work supported in part by NSF Grant numbers 1935966, 2330891, and 2029235



